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Abstract

X-rays, being waves,always undergo the propagation effects of reflection, refraction,
diffraction, geometric attenuation and absorption. In most circumstances the first four ef-
fects are considered negligible given the resolution sizesdemanded of the measurement sys-
tems, x-ray energies involved, and physical properties of the materials under evaluation. We
have reached the point, however, in some x-ray non-destructive evaluation (NDE) and imag-
ing where we wish to resolve features ofmicrometer sizein millimeter sizeobjects to less
thanmicrometer resolution. Given this resolution and the sizes of the measurement systems,
diffraction effects within the object may become observable. We studied the extent to which
diffraction is observable numerically using a two-dimensional paraxial approximation wave
propagation code using a multislice method. We modeled realistic parts of interest at worst-
case x-ray energies, comparing wave propagation and straight-ray simulated results. In two
cases, we compare the numerical results to experimental measurements. The conclusion, based
upon the results of the simulation code, is that diffractioneffects on the measured data will be
insignificant. However, we demonstrate by a single example,that in certain cases diffraction
effects may be significant.
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1 Introduction

X-rays, being waves,alwaysundergo the propagation effects of reflection, refraction,diffraction,
geometric attenuation, and absorption. In most circumstances the first four effects are considered
negligible given the resolution sizes of the measurement systems, x-ray energies involved, and
physical properties of the materials under evaluation. We have assumed x-ray propagation is de-
scribed by atransport equationand that we may adopt the particle interpretation of straight-ray
propagation in which absorption only is taken into account.

We have reached the point, however, in x-ray non-destructive evaluation (NDE) and imaging
where we wish to resolve features ofmicrometer sizein millimeter sizeobjects to less thanmi-
crometer resolution. Given this resolution and the sizes of the measurement systems, diffraction
effects within the object may become observable and we must use awave equation, the particle or
transport model being incapable of accounting for diffraction.

In determining the transition from transport to wave equation, we have adopted a model devel-
oped by Gbur and Wolf [1] which describes the point at which diffraction effects become signifi-
cant. The model is based upon the size of the feature to be resolved (in this case a micrometer) and
the size of the measurement system; it ignores material properties such as density and was derived
under the Born approximation which assumes small changes inrefractive index. The relationship
states [1],

L � δ2

2λ
, (1)

whereL is the distance from the illuminated face of the object underevaluation to the detector,λ
is the illuminating wavelength, andδ is the feature size. These dimensions are shown in Figure 1.
The relationship states that ifL is significantly larger than the ratio on the right hand side of Eqn. 1,
then diffraction effects will be observed. One caveat we must consider in practical measurement
systems is that the detector resolution may be insufficient to record these effects. Another is that,
as stated, the formula was derived under the Born approximation and may not be applicable given
the physical properties of some of the parts and materials wewish to evaluate.

We studied the extent to which diffraction is observable numerically using a two-dimensional
paraxial approximation wave propagation code and a straight-ray propagation code. For the former,
a multislice method is used to propagate the field within the object from entry to exit plane. For
both the wave and straight-ray propagated models, a plane-to-plane Fourier method is used to
propagate the field from the exit to the measurement plane. The code accepts a complex refractive
index, thus accounting for absorption. The wave code naturally accounts for geometric attenuation
because of its wave-based nature. The code does not explicitly model density unless it is accounted
for in the complex refractive index. A rule-of-thumb in wavepropagation and scattering codes is
that the spatial sample interval must be finer than a tenth of awavelength (∆h ≤ λ/10). At x-ray
wavelengths, this is not possible in millimeter size objects. For example, the wavelength at our
lowest x-ray energy of 8 keV is 0.155 nm. The smallest spatialresolution we achieved using the
paraxial approximation wave propagation code was 60 nm which is over 3.5 orders of magnitude
greater than the minimum required for an accurate simulation. A consequence of this resolution
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Figure 1:Geometry of Gbur and Wolf.δ is the dimension of the smallest scattering feature to be
resolved,L is the distance from the illuminated side of the object to themeasurement plane. The
field, with wavelengthλ, is incident from the left.
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limitation is that the millimeter size features will be crudely pixelated or sampled with respect to
the illuminating x-ray field. This effect is observable in all the results.

We modeled the following objects at a worst-case, that is low, x-ray energy (8 keV), comparing
wave and straight-ray propagation:

• Two obscuring copper edges;

• A gold covered copper (Au/Cu) edge;

• An arrangement of three 5µm diameter carbon fibers;

• A cylindrical multishell with and without 1µm defects on its surface.

In parallel with the simulation, two experimental measurements were performed at 8 keV: one of
the gold covered copper edge, another of the three 5µm diameter carbon fibers. The experimen-
tal parameters are listed in Table 1. The refractive indicesused in the simulations are listed in
Appendix B.

The Au/Cu edge data were used to estimate the point spread function (PSF) (or rather, theline
spread function) of the imaging system. Using the assumption the PSF has the form of either a
single or sum of two Gaussians, a least mean squares (LMS) algorithm was used to fit the PSF and
estimate the Gaussian parameter(s). The goal was to apply this PSF to the simulated carbon fiber
data and verify the code by comparing them with the experimental carbon fiber data. We were not
successful at this and demonstrate by fitting the experimental carbon fiber data to the simulated
data, the PSFs of the edge and fiber data differ.

The goal of this study, however, was to determine the extent to which diffraction effects are
observable. The conclusion, based upon the results of the simulation code, is that diffraction
effects on the measured data will be insignificant, particularly given the blurring by the system
PSF. However, we demonstrate by a single example, that in certain cases diffraction effects may
be significant.

In the following section, we present the simulation of the two obscuring copper edges. They
are arranged such that no straight-ray propagated field willpass and reach the measurement plane.
Only the wave propagated diffracted field will pass.

Section 3, presents and discusses the measured and simulated gold covered copper edge data.
The 5 µm diameter carbon fiber results are presented in Section 4. The cylindrical multishell
simulation is treated in Section 5.

Sections 3 and 4 show single Gaussian PSFs. Double Gaussian PSF fits and results are sum-
marized in Appendix A.

Tables in Appendix B list the material parameters used in thesimulation. Appendix C lists the
MATLAB .m files used to process and analyze the data.

2 Obscuring Copper Edges Test

As an initial test we modeled the two offset copper edges shown in profile in Figure 2. The field
is incident from the left. The edges are offset along the propagation direction,z, but arranged
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Au/Cu edge data
sod 75 mm
odd 683 mm
sdd 758 mm

Magnification
sdd

sod
= 10.1

Equivalent plane
wave measure-
ment plane

odd

M
= 67.62 mm

∆y 2.47µm
(a)

3/11/2005 Three Carbon Fiber Data
sod 47.7 mm
odd 716 mm
sdd 763.7 mm

Magnification
sdd

sod
= 16.0

Equivalent plane
wave measure-
ment plane

odd

M
= 44.72 mm

∆y 1.56µm
(b)

Table 1:8 keV measurement parameters for the (a) Au/Cu edge, (b) 3/11/2005 three carbon fiber
experimental data sets.

Au/Cu Edge Data
σ (µm) 2.96

FWHM ( µm) 7.32
HM 0.02

03/11/2005 Carbon Fiber-Based PSFs
Double Fiber Single Fiber

σ (µm) 4.38 3.97
FWHM (µm) 10.25 8.87
HM 0.02 0.02

Table 2:Gaussian parameters for the PSF fits.
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Figure 2: Double obscuring copper edge test geometry. The field is incident from the left. The
edges are offset along the propagation direction,z, but arranged vertically so that when viewed
face-on they form a completely obscuring barrier to the incident field.

vertically so that when viewed face-on they form a completely obscuring barrier to the incident
field. With a material of sufficiently high attenuation and thickness, only the diffracted field, if
any, should reach the detector. Any fields “propagated” by a transport equation will be stopped at
the edges.

For the example presented here, we simulated 1 mm of copper illuminated by 8 keV x-rays
(λ = 0.155 nm). Using the formula of Eqn. 1, we would expect no observable diffraction effects
for measurement planes placed within a distance of

L =
(10−3)

2

2 × 0.155 × 10−9
≈ 3.2 km. (2)

We compare the results of straight-ray and wave propagationin Figure 3. The received measured
field intensity is shown for measurement planes placed at 1, 5, 10, and 100 cm. These are well
within the 3.2 km limit, yet the attenuation and thickness issufficient to annihilate all straight-ray
propagation: the received field is purely diffractive. We emphasize, again, the formula of Eqn. 1
was derived under the Born approximation which is violated in this example. Additionally, it does
not model material properties other than complex refractive index. This example does provide a
verification that the multislice paraxial approximation wave propagated code can model diffraction
around sharp edges.
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Figure 3:Obscuring double edge results. From top to bottom, we plot the received field intensity
at measurement planes placed at 1, 5, 10, and 100 cm. We simulated straight-ray (red trace) and
wave (blue trace) propagation. The attenuation and thickness of the copper edges is sufficient to
annihilate all straight-ray propagation; only the diffracted field is observed (measured).
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3 Gold Covered Copper Edge

We simulated 8 keV illumination of a gold covered copper surface with a radius of curvature of
37.5 mm. The gold layer is 60µm thick. The part has a width of 3 mm. A graphic of the part is
shown in Figure 4. The simulation models an experiment whoseparameters are listed in Table 1(a).

The goal of the experiment was to estimate the point spread function (PSF), or more accurately,
the line spread function(LSF) of the measurement system. Consider the following, ideal, two-
dimensional edge object function described by

o(x, y) =

{

0 y < 0 ∀x,
α y ≥ 0 ∀x,

(3)

whereα is the amplitude of the edge. The image formed by the x-ray imaging system is the
convolution of the object function with the PSF of the measurement system:

f(x, y) =
∫

∞

−∞

dy′

∫

∞

−∞

dx′ o(x′, y′) h(x − x′, y − y′), (4)

= α
∫

∞

0

dy′

∫

∞

−∞

dx′ h(x − x′, y − y′), (5)

where we wish to determineh(x, y).
To estimate the PSF from the edge response, we compute the derivative off(x, y) w.r.t. y:

∂yf(x, y) = α
∫

∞

0

dy′

∫

∞

−∞

dx′ ∂yh(x − x′, y − y′), (6)

= α
∫

∞

−∞

dx′ h(x − x′, y − y′)
∣

∣

∣

y′=∞

y′=0
, (7)

= α
∫

∞

−∞

dx′ h(x − x′, y), (8)

where we have used the Liebitz Derivative of an Integral and the assumption the PSF is zero at
infinity. Note: this does not yield the PSF iny. Rather, it yields the PSF integrated overx. If we
assume the two-dimensional PSF is separable, i.e. can be written as

h(x, y) = hx(x) hy(y), (9)

then we have

∂yf(x, y) = α hy(y)
∫

∞

−∞

dx′ hx(x − x′) = α hy(y), (10)

with the assumption
∫

∞

−∞

dx hx(x) ≡ 1. (11)

Note, if the PSF is not separable, then estimating the LSF from the Au/Cu edge data and
applying it to the carbon fiber data is not valid. If it is separable but Eqn. 11 does not hold, then
we should be off by a simple scaling factor. This does not appear to be the case.
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Figure 4:Simulation geometry for gold covered copper edge.

Figure 5 presents the results of the Au/Cu edge experiment and simulation. Figure 5(a) shows
the measured data, simulated straight-ray transmission, and simulated wave propagated transmis-
sion. Using Eqn. 10, we computed the PSF from the measured data via a centered two-point
difference. This is shown in Figure 5(b). In order to comparedata sets (both measured and simu-
lated) accurately, we had to resample them to a common sampleinterval (∆y). Figure 5(b) overlays
the pre- and post-resampled measured Au/Cu edge data PSF. A Gaussian model for the PSF was
adopted,

h(y, σ) =
1√
2πσ

exp

[

−1

2

(

y

σ

)2
]

, (12)

and fit to the measured data PSF using a least mean square algorithm1 via

σ̂ = argmin
σ

∑

n

[hy(yn) − h(yn, σ)]2 , (13)

whereyn are the discretey-axis sample points, andhy(yn) is the PSF computed from the measured
data via Eqn. 10 with the assumption of Eqn. 11. The fit returned a width ofσ = 2.96µm. The
results are listed in Table 2 and plotted in Figure 8(b).

4 Three 5µm Diameter Carbon Fiber

As a code validation test, we considered the configuration ofthree5µm diameter carbon wires
shown in Figure 6. With respect to the incident field, two of the wires are separated in the plane

1We used MATLAB’sfminsearch function.
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Figure 5:Comparison of measured and simulated Au/Cu edge results. (a) Superposition of mea-
sured transmission and simulated wave and straight-ray propagated transmissions for the exper-
imental parameters of Table 1(a). (b) comparison of measured PSF and the resampled measured
PSF. (c) the simulated data convolved with theσ = 2.96µm Gaussian fit to the measured PSF.
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perpendicular to the direction of propagation; while two are arranged so that one precisely optically
shadows the other. We simulated wire a separation of 10.2 mm at 8 keV, and compared the results
with experimental measurements on an actual arrangement ofcarbon wires using an 8 keV source.

The data are presented in Figure 7. The top two plots are the full resolution, that is pre-
convolution, simulated results for the wave and straight-ray propagated fields. The bottom plots
show the measured transmission data for the object. We observe there is minimal difference be-
tween the straight-ray and paraxial wave propagated fields.In order to model the detector element
blur, the simulated intensities were convolved with a Gaussian of the form of Eqn. 12, where the
width, σ, was determined by convolving the simulated results and comparing them with the actual
data via

σ̂ = argmin
σ

∑

n

[d(yn) − conv(f(yn), h(yn, σ))]2 , (14)

whered(yn) are the measured data at discrete sample locationyn, f(yn) are the simulated data,
h(yn, σ) is the Gaussian of Eqn. 12, andconv(·, ·) is the discrete convolution operator. In this
manner, we arrived at values of3.97µm for the single fiber, and4.38µm for the double fiber. These
Gaussians are presented in Figure 8 were we also compare the Gaussian fit to the Au/Cu edge
measured PSF.

Figure 9(a) shows the simulated data convolved with the Au/Cu edge measured PSF; Fig-
ure 9(b) shows the data convolved with the PSF fit via Eqn. 14.

Our conclusion for this case, justified by the minimal difference in wave propagated and
straight-ray simulated results, is that diffraction is notobservable. This is particularly true when
the data are blurred due to the large detector size.

5 Multishell Geometry

We modeled the cylindrical multishell described in Table 3 and shown graphically in Figure 10.
We modeled the part under two configurations: one consistingof a smooth symmetric multishell,
and another in which three “defects” in the form of 1µm bumps placed on the outer surface at 90,
135, and 180 degrees. Additionally, we simulated the multishell at two energies: 8 keV (λ = 0.155
nm) and 30 keV (λ = 0.0414 nm).

The results presented in Figure 11 for both energies show obvious differences in the model
without the “defects” and that with it. However, very littledifference is seen between the straight-
ray and wave propagated measured fields. Following the formula of Eqn. 1, we expect to observe
diffraction effects after 3.2 mm at 8 keV and 12 meters at 30 keV for a 1µm defect. We conclude
that for this particular combination of geometry, sizes, and material properties, that diffraction can
be neglected.

For completeness, we show in Figures 12 the results of Figure11 with a Gaussian PSF of 2.96
µm applied to the measured field intensities. Under these conditions, no diffraction effects will be
observed.
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Figure 6:Three carbon fiber arrangement.

Radius (µm) Material
337 Vacuum
372 0.833C+0.074H+0.043Br
1275 CH
1600 0.997Be+0.003Cu

1 µm Radius Bump
Location (µm) Material

(-1600,0) 0.833C+0.074H+0.043Br
(-1131.37,1131.37) 0.833C+0.074H+0.043Br

(0,1600) 0.833C+0.074H+0.043Br

Table 3:Description of the multishell geometry and physical parameters. A figure of the multishell
is presented in Figure 10.
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diameter carbon fiber data. The simulated data blurred with Au/Cu edge-based PSFs are presented
in Figure 8. The same data blurred with PSFs fitto the data are shown in Figure 9.Note: the
measured data “plateau” was shifted up by the indicated value to center it about one.
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Figure 9:(a) simulated 5µm diameter carbon fiber data convolved with the measured Au/Cu edge
PSF plotted with the measured carbon fiber data. (b) simulated fiber data convolved with the
Gaussians fit to the data. The Gaussians are presented in Figure 8(a).
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Figure 10:Geometry of multishell.

6 Conclusion

Given the simulated and limited experimental results we presented, we we believe diffraction is
negligible, particularly so given the large detector blur.We note that the simulation code does not
model density, only the refractive index parameters listedin Appendix B. Higher density materials
substituted in the multishells or other configurations may result in observable diffraction effects.
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Figure 11:Multishell results for (a) 8 keV and (b) 30 kev. The top plot ofeach graph set shows the
top half of the received far field intensity. The three bottomplots show the intensity details around
the area projected from the bumps. The far field intensity wasevaluated at 100 mm.

17



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

2

y (mm)

Multishell Geometry at 8keV Measured at 100 mm, Convolution σ = 2.96 µm

-0.01 0 0.01
0.295

0.3

0.305

0.31

0.315

y (mm)
1.12 1.13 1.14

0.4

0.405

0.41

0.415

0.42

0.425

0.43

y (mm)
1.59 1.6 1.61

0.8

1

1.2

1.4

1.6

y (mm)

Wave Propagated w/Bumps

Straight Propagated w/Bumps

Wave Propagated w/o Bumps

Straight Propagated w/o Bumps

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.5

1

1.5

y (mm)

Multishell Geometry at 30keV Measured at 100 mm, Convolution σ = 2.96 µm

-0.01 0 0.01
0.502

0.503

0.504

0.505

0.506

0.507

0.508

y (mm)
1.12 1.13 1.14

0.96

0.9605

0.961

0.9615

0.962

0.9625

y (mm)
1.59 1.6 1.61

0.95

1

1.05

1.1

1.15

1.2

y (mm)

Wave Propagated w/Bumps

Straight Propagated w/Bumps

Wave Propagated w/o Bumps

Straight Propagated w/o Bumps

(b)

Figure 12:Multishell results for (a) 8 keV and (b) 30 kev but with a 2.96µm detector blur applied.
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A Double Gaussian PSF

We performed double Gaussian fits to the PSF using as a model,

h(y, Ω) =

(

1√
2π
∑Ng

n=1 αnσn

) Ng
∑

n=1

αn exp

[

−1

2

(

y − y0n

σn

)2
]

, (15)

whereNg is the number of Gaussians (two), and the values for the scale(αn), width (σn), and shift
(y0n) parameters form the parameter vector,

Ω ≡
[

{αn}Ng

n=1
{σn}Ng

n=1
{y0n}Ng

n=1

]T

. (16)

As described previously, the measured Au/Cu edge PSF was fit to the double Gaussian via

Ω̂ = argmin
Ω

∑

n

[hy(yn) − h(yn, Ω)]2 , (17)

and the carbon fiber data via,

Ω̂ = argmin
Ω

∑

n

[d(yn) − conv(f(yn), h(yn, Ω))]2 . (18)

The results are presented in Figures 13, 14, 15, and 16.

B Physical Parameter Lookup

Energy 8 keV 30 keV
λ 1.55 × 10−4µm 4.14 × 10−5µm

8 keV
Material δ β 1 − δ

W 4.7008 × 10−5 3.9664 × 10−6 0.999952992
Be 5.3265 × 10−6 2.0739 × 10−9 0.9999946735
Cu 2.4759 × 10−5 5.6196 × 10−7 0.999975241

C (ρ = 1.8 g/cc) 5.85 × 10−6 9.46 × 10−9 0.99999415
C (ρ = 2.2 g/cc) 7.1526 × 10−6 1.1560 × 10−8 0.9999928474

H 5.7846 × 10−10 6.5200 × 10−16 0.99999999942154
Br 8.6972 × 10−6 3.3997 × 10−7 0.9999913028
Au 4.7730 × 10−5 4.9592 × 10−6 0.99995227
W 4.7008 × 10−5 3.9664 × 10−5 0.999952992
Fe 2.2676 × 10−5 2.9621 × 10−6 0.999977324
CH 3.5766 × 10−6 5.7800 × 10−9 0.99999642341077

0.997Be+0.003Cu 5.3848 × 10−6 3.7536 × 10−9 0.9999946152025
0.923C+0.077H 6.6019 × 10−6 1.0670 × 10−8 0.999993398105659

0.883C+0.074H+0.043Br 6.6898 × 10−6 2.4826 × 10−8 0.999993310231794
0.877C+0.073H+0.050Fe7.4067 × 10−6 1.5824 × 10−7 0.999992593327572
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Figure 13:(a) double Gaussian fit to the measured Au/Cu edge PSF. (b) simulated data convolved
with the double Gaussian.
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Figure 16:Comparison of the measured carbon fiber data and the simulated data convolved with
the double Gaussian PSFs. (a) double Gaussian fit to the measured edge data. (b) double Gaussian
fit to the fiber data.
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30 keV
Material δ β 1 − δ

W 3.5614 × 10−6 1.3158 × 10−7 0.9999964386
Be 3.7835 × 10−7 6.9798 × 10−12 0.99999962165
Cu 1.9030 × 10−6 3.0749 × 10−8 0.999998097
C 5.0699 × 10−7 3.7394 × 10−11 0.99999949301
H 4.1135 × 10−11 1.8122 × 10−18 0.999999999958865
Br 6.3585 × 10−7 1.7888 × 10−8 0.99999936415
Au 3.5555 × 10−6 1.6406 × 10−7 0.9999964445
W 3.5614 × 10−6 1.3158 × 10−7 0.9999964386
Fe 1.7041 × 10−6 1.9762 × 10−8 0.9999982959
CH 2.5352 × 10−7 1.8697 × 10−11 0.999999746484432

0.997Be+0.003Cu 3.8292 × 10−7 9.9206 × 10−11 0.99999961707605
0.923C+0.077H 4.6795 × 10−7 3.4515 × 10−11 0.999999532045063

0.883C+0.074H+0.043Br 4.7502 × 10−7 8.0220 × 10−10 0.999999524983236
0.877C+0.073H+0.050Fe5.2984 × 10−7 1.0209 × 10−9 0.999999470161767
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C MATLAB Codes

The following sections list the MATLAB codes used in the dataprocessing and analysis.

C.1 Code to Read the Au/Cu Edge Data
%************************************************** ***************************
%
% TITLE: assemble.m
% AUTHOR: Sean K. Lehman
% DATE: June 27, 2005
% FUNCTION: Load and display the real & simulated x-ray data
% SYNTAX:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
um = 1e-6;
mm = 1e-3;
Width = 0.1 * mm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the simulated data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[yst683 dst683] = textread(’683mm.s.int.dat’,’’,’heade rlines’,1);
[ywv683 dwv683] = textread(’683mm.w.int.dat’,’’,’heade rlines’,1);
dys = ( yst683(2) - yst683(1) ) * um;
dyw = ( ywv683(2) - ywv683(1) ) * um;
yst683 = yst683*um ;
ywv683 = ywv683*um ;
if dys ˜= dyw

error([’The wave and straight-ray simulations have differ ing sample’ ...
’ intervals’]);

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% As a test, try resampling the simulated data from dy=0.366u m to dy=0.5um
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
if 0

dy0 = dys;
dy1 = 0.6*um;
dy1 = 0.8*um;
dy1 = 0.52*um;
dy1 = 0.4*um;
mag = 1e4;
p = round( mag*dy0/um );
q = round( mag*dy1/um );
dy = (q/p)*dy0;
fprintf(1,’Old Simulated dy : %g micrometers\n’,dy0/um);
fprintf(1,’New Simulated dy : %g micrometers\n’,dy/um);
fprintf(1,’[p q] : [%d %d]\n’,p,q);
dst = resample( dst683-mean(dst683) , p , q ) + mean(dst683);
dwv = resample( dwv683-mean(dwv683) , p , q ) + mean(dwv683);
Ny = length(dwv);
yst683 = [0:Ny-1]*dy;
ywv683 = yst683;
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dst683 = dst;
dwv683 = dwv;
% Fix edge effects
dst683(1:500) = 0;
dst683(end-500:end) = 1;
dwv683(1:500) = 0;
dwv683(end-500:end) = 1;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute PSFs from the simulated data.
% These are used to center the data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psfwv683 = fd1( dwv683 , ywv683(2)-ywv683(1) );
psfwv683 = psfwv683 / sum(psfwv683);
psfst683 = fd1( dst683 , yst683(2)-yst683(1) );
psfst683 = psfst683 / sum(psfst683);

% Center the data about zero
[val,loc] = max(abs(psfwv683));
ywv683 = ywv683 - ywv683(loc);
[val,loc] = max(abs(psfst683));
yst683 = yst683 - yst683(loc);
nwv683 = find( abs(ywv683)<=Width/2 );
nst683 = find( abs(yst683)<=Width/2 );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Save the simulated data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Simulated683 = struct(’y’ , ywv683(nwv683),...

’wv’ , dwv683(nwv683),...
’st’ , dst683(nst683),...
’dy’ , ywv683(2) - ywv683(1));

fprintf(1,’Simulated 683 [Ny dy] : %d %g micrometers\n’,.. .
length(Simulated683.y),Simulated683.dy/um);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the measured data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
file1 = ’lo_avg7_T_AuEdge-1157-6.5s-45kV-44ma-RIS.32b it.txt’;
dyold = 2.47*um;
[tmp y1 d1] = textread(file1,’%f %f %f’);
y1 = y1*dyold;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resample the measured data to the simulated data’s interva l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’Measured Data [Ny dy] : %3d %g micrometers\n’,. ..
length(y1),dyold/um);
mag = 1000;
mag = 10000;
p = round( mag * dyold / um );
q = round( mag * Simulated683.dy / um );
dy = (q/p)*dyold;
fprintf(1,’Old Measured dy : %g micrometers\n’,dyold/um) ;
fprintf(1,’New Measured dy : %g micrometers\n’,dy/um);
fprintf(1,’[p q] : [%d %d]\n’,p,q);
mu = mean(d1);
dr = resample(d1-mu,p,q) + mu;
Ny = length(dr);
y = [0:Ny-1]’*dy;y = y-mean(y);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the PSF for both the pre- and post-resampled data
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% Note: It is best to compute the PSF for the pre-resampled
% measured data and then resample that PSF than to compute the PSF
% from the post-resampled data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psfold = fd1( d1 , dyold );
psf = fd1( dr , dy );
% Resample the old psf
psfr = resample(psfold-mean(psfold),p,q) + mean(psfold) ;
% Zero out edges where there are resampling problems
psf(1:200) = 0;
psf(end-200:end) = 0;

psfr(1:200) = 0;
psfr(end-200:end) = 0;

% Center the data about zero
[val,loc] = max(abs(psfr));
y = y - y(loc);
n = find( abs(y)<=Width/2 );

Measured = struct(’y’,y(n),’d’,dr(n),’psf’,psfr(n),’d y’,y(2)-y(1));
Measured.psf = Measured.psf / sum( Measured.psf );

% Center the data about zero
[val,loc] = max(abs(psfold));
y1 = y1 - y1(loc);
nold = find( abs(y1)<=Width/2 );
psfold = psfold(nold) / sum(psfold(nold));

psf = psf(n) / sum(psf(n));

fprintf(1,’Simulated 683 Ny : %g micrometers\n’,...
length(Simulated683.y));
fprintf(1,’Measured Ny : %d micrometers\n’,...
length(Measured.y));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compare via a plot the pre- and post-resampled data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure(’Pre- And Post-Resampled PSF 1’);clf
hp = plot(y1(nold)/um,psfold/dyold,’g’,...

Measured.y/um,Measured.psf/dy,’b’,...
Measured.y/um,psf/dy,’r’);

ht = [ title(’Direct Detected Edge PSF’); xlabel(’y (\mum)’ ); ylabel(’Transmission’) ];
set(gca,’xlim’,Width*[-1 1]/4/um);
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
set(hp,’linewidth’,1)
legend(’PSF from data’,...

’Resampled PSF from data’,...
’PSF from resampled data’);

fetchfigure(’Pre- And Post-Resampled PSF’);clf
hp = plot(y1(nold)/um,psfold/dyold,’g’,...

Measured.y/um,Measured.psf/dy);
ht = [ title(’Direct Detected Edge PSF’); xlabel(’y (\mum)’ ); ylabel(’Transmission’) ];
set(gca,’xlim’,Width*[-1 1]/4/um);
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
set(hp,’linewidth’,1);set(hp(1),’linewidth’,2);
legend(’PSF from data’,...

’Resampled PSF from data’);
legend boxoff
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cmd = ’print -depsc LANLAuCuEdgeResample.eps’;
fprintf(1,’%s\n’,cmd); eval( cmd );

save LANL Measured Simulated683

y = Measured.y;

fetchfigure(’2005.06.23.LANL’);clf
hp = plot(y/mm,Measured.d,’g’,...

y/mm,Simulated683.wv,’b’,...
y/mm,Simulated683.st,’r--’);

ht = [ title(’Direct Detected Edge Data’); xlabel(’y (mm)’) ; ylabel(’Transmission’) ];
set(gca,’xlim’,Width*[-1 1]/4/mm);
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
set(hp,’linewidth’,1);set(hp(1),’linewidth’,2)
legend(’Measured’,...

’683 Wave Simulation’,’683 Straight-Ray Simulation’,...
’location’,’SouthEast’)

legend boxoff

drawnow; refresh

cmd = ’print -dpsc LANLAuCuEdge.ps’;
cmd = ’print -depsc LANLAuCuEdge.eps’;
fprintf(1,’%s\n’,cmd); eval( cmd );

C.2 Code to Read the Carbon Fiber Data
%************************************************** ***************************
%
% TITLE: assembleLANL.m
% AUTHOR: Sean K. Lehman
% DATE: August 24, 2005
% FUNCTION: Assemble measured and simulated data
%
%
% SYNTAX:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2004 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
mm = 1e-3;
um = 1e-6;
nm = 1e-9;
Width = 0.1*mm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the simulated data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[ys ds] = textread(’5um.st.int.dat’,’’,’headerlines’,1 );
[yw dw] = textread(’5um.wv.int.dat’,’’,’headerlines’,1 );
ys = ys * um; dys = ys(2) - ys(1);
yw = yw * um; dyw = yw(2) - yw(1);
if dys ˜= dyw

error([’The wave and straight-ray simulations have differ ing sample’ ...
’ intervals’]);
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end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Separate the one wire response from the two wire response.
% The single wire is at y==-2 mm.
% The double wires are at y==2 mm.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
yc = [-2 2]*mm;
yrange = [ yc(1)-Width/2 yc(1)+Width/2

yc(2)-Width/2 yc(2)+Width/2
];

n1 = find( (yw>=yrange(1,1)) & (yw<=yrange(1,2)) );
n2 = find( (yw>=yrange(2,1)) & (yw<=yrange(2,2)) );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resample the fiber data to the Au/Cu sample interval of 0.36 6
% micrometers.
% The simlated fiber data have a sample interval of 0.183 micr ometers.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mag = 100000;
mag = 10000;
load ../../AuCuEdge/2005.06.23.LANL/LANL Simulated683
dyAuCu = Simulated683.dy;
p = fix( mag * dys / um );
q = fix( mag * dyAuCu / um );
dy = (q/p)*dys;
fprintf(1,’Old simulated dy : %g micrometers\n’,dys/um);
fprintf(1,’New simulated dy : %g micrometers\n’,dy/um);
fprintf(1,’[p q] : [%d %d]\n’,p,q);
dsr1 = resample(ds(n1)-mean(ds(n1’)),p,q) + mean(ds(n1) );
dsr2 = resample(ds(n2)-mean(ds(n2)),p,q) + mean(ds(n2)) ;
dwr1 = resample(dw(n1)-mean(dw(n1)),p,q) + mean(dw(n1)) ;
dwr2 = resample(dw(n2)-mean(dw(n2)),p,q) + mean(dw(n2)) ;
Ny = length(dsr1);
y = [0:Ny-1]’*dy;y = y-mean(y);

% Extract the data range and center it
SimSingle = struct(’name’,’3/11/2005 LANL, 0 rotation, si ngle wire’,...

’y’ , y,...
’st’ , dsr1,...
’wv’ , dwr1,...
’dy’ , dy);

SimSingle.y = SimSingle.y - mean( SimSingle.y );

SimDouble = struct(’name’,’3/11/2005 LANL, 0 rotation, do uble wire’,...
’y’ , y,...
’st’ , dsr2,...
’wv’ , dwr2,...
’dy’ , dy);

SimDouble.y = SimDouble.y - mean( SimDouble.y );

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Load the measured data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[tmp y d] = textread(’lo1_avg73_T_CarbonWire-031105+220 .32bit.txt’,’%f %f %f’);
yold = y * mm;
dyold = yold(2) - yold(1);
Nyold = length(d);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Resample the measured data to the simulated data’s interva l
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’Single Simulated [Ny dy]: %3d %g micrometers\n ’,...
length(SimSingle.y),SimSingle.dy/um);
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fprintf(1,’Double Simulated [Ny dy]: %3d %g micrometers\n ’,...
length(SimDouble.y),SimDouble.dy/um);
fprintf(1,’Measured Data [Ny dy] : %3d %g micrometers\n’,l ength(y),dyold/um);
mag = 1000;
p = fix( mag * dyold / um );
q = fix( mag * SimDouble.dy / um );
dy = (q/p)*dyold;
fprintf(1,’New Measured dy : %g micrometers\n’,dy/um);
fprintf(1,’[p q] : [%d %d]\n’,p,q);
mu = mean(d);
dr = resample(d-mu,p,q) + mu;
Ny = length(dr);
y = [0:Ny-1]’*dy;y = y-mean(y);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Extract and center the data single and double fiber respons es
% Double is 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[val l1] = min( dr(1:fix(Ny/2)) );
n = l1 + [-fix(Width/dy/2):fix(Width/dy/2)];
d1 = dr( n );
y1 = y( n );
y1 = y1 - mean( y1 );
dy1 = y1(2) - y1(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Single is 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[val l2] = min( dr(fix(Ny/2):Ny) ); l2 = l2 + fix(Ny/2) - 1;
n = l2 + [-fix(Width/dy/2):fix(Width/dy/2)];
d2 = dr( n );
y2 = y( n );
y2 = y2 - mean( y2 );
dy2 = y2(2) - y2(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Detrend the data to place the plateau at one
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p1 = polyfit(y1/mm,d1,0);
d1 = d1 - p1 + 1;

p2 = polyfit(y2/mm,d2,0);
d2 = d2 - p2 + 1;

MeasuredSingle = struct(’y’, y2, ’d’, d2, ’dy’, dy);
MeasuredDouble = struct(’y’, y1, ’d’, d1, ’dy’, dy);

save LANL.03.11.2005.mat SimSingle SimDouble MeasuredSi ngle MeasuredDouble
clear y1 y2 d1 d2 dr
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Repeat the extraction for the pre-resampled data
% Extract and center the data single and double fiber respons es
% Double is 1
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[val l1] = min( d(1:fix(Nyold/2)) );
n = l1 + [-fix(Width/dyold/2):fix(Width/dyold/2)];
d1 = d( n );
y1 = yold( n );
y1 = y1 - mean( y1 );
dyold1 = y1(2) - y1(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Single is 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[val l2] = min( d(fix(Nyold/2):Nyold) ); l2 = l2 + fix(Nyold/ 2) - 1;
n = l2 + [-fix(Width/dyold/2):fix(Width/dyold/2)];
d2 = d( n );
y2 = yold( n );
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y2 = y2 - mean( y2 );
dyold2 = y2(2) - y2(1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Detrend the data to place the plateau at one
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
p1 = polyfit(y1/mm,d1,0);
d1 = d1 - p1 + 1;

p2 = polyfit(y2/mm,d2,0);
d2 = d2 - p2 + 1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compare via a plot the pre- and post-resampled data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure( ’Compare Pre- & Post-Resample’ );clf
ylim = [0 2.5];

subplot(121)
hp = plot(MeasuredSingle.y/mm,MeasuredSingle.d,’b’,.. .

y2/mm,d2,’r’);
ht = [ xlabel(’y (mm)’);

title(’Single Fiber’) ];
set(hp,’linewidth’,1);set(gca,’fontsize’,12);set(ht ,’fontsize’,12);
set(gca,’ylim’,[0.9 1.05]);
htxt = text(0,0.91,sprintf(’Plateau Shift = %g’,p2));
set(htxt,’fontsize’,12,’horizontal’,’center’)
legend(’Post Resample’,’Pre Resample’);
legend boxoff

subplot(122)
hp = plot(MeasuredDouble.y/mm,MeasuredDouble.d,’b’,.. .

y1/mm,d1,’r’);
ht = [ xlabel(’y (mm)’);

title(’Double Aligned Fibers’) ];
set(hp,’linewidth’,1);set(gca,’fontsize’,12);set(ht ,’fontsize’,12);
set(gca,’ylim’,[0.9 1.05]);
htxt = text(0,0.91,sprintf(’Plateau Shift = %g’,p1));
set(htxt,’fontsize’,12,’horizontal’,’center’)
legend(’Post Resample’,’Pre Resample’);
legend boxoff

cmd = ’print -depsc LANL.03.11.2005.Resample.eps’;
fprintf(1,’%s\n’,cmd); eval( cmd );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure( ’03/11/2005 LANL Three Carbon Fibers’ );clf

ylim = [0 2.5];

subplot(221)
hp = plot(SimSingle.y/mm,SimSingle.st,’r’,...

SimSingle.y/mm,SimSingle.wv,’b’);
ht = [ xlabel(’y (mm)’);

title(’Simulated Single Fiber’) ];
set(hp,’linewidth’,1);set(gca,’fontsize’,12);set(ht ,’fontsize’,12);
set(gca,’ylim’,[0.1 2.5]);
set(gca,’xlim’,Width*[-1 1]/mm/4);
legend(’Straight’,’Wave’);
legend boxoff

subplot(222)
hp = plot(SimDouble.y/mm,SimDouble.st,’r’,...

SimDouble.y/mm,SimDouble.wv,’b’);
ht = [ xlabel(’y (mm)’);

title(’Simulated Double Aligned Fibers’) ];
set(hp,’linewidth’,1);set(gca,’fontsize’,12);set(ht ,’fontsize’,12);
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set(gca,’xlim’,Width*[-1 1]/mm/4);
set(gca,’ylim’,[0.1 2.5]);
legend(’Straight’,’Wave’);
legend boxoff

subplot(223)
hp = plot(MeasuredSingle.y/mm,MeasuredSingle.d,’g’);
ht = [ xlabel(’y (mm)’);

title(’Direct Detected Measured Single Fiber’) ];
set(hp,’linewidth’,1);set(gca,’fontsize’,12);set(ht ,’fontsize’,12);
set(gca,’ylim’,[0.9 1.05]);
htxt = text(0,0.91,sprintf(’Plateau Shift = %g’,p2));
set(htxt,’fontsize’,12,’horizontal’,’center’)

subplot(224)
hp = plot(MeasuredDouble.y/mm,MeasuredDouble.d,’g’);
ht = [ xlabel(’y (mm)’);

title(’Direct Detected Measured Double Aligned Fibers’) ] ;
set(hp,’linewidth’,1);set(gca,’fontsize’,12);set(ht ,’fontsize’,12);
set(gca,’ylim’,[0.9 1.05]);
htxt = text(0,0.91,sprintf(’Plateau Shift = %g’,p1));
set(htxt,’fontsize’,12,’horizontal’,’center’)

cmd = ’print -depsc LANL.03.11.2005.eps’;
fprintf(1,’%s\n’,cmd); eval( cmd );

C.3 Code to Process the Data Sets I
This code,Main1.m , fits the data to single Gaussians.

%************************************************** ***************************
%
% TITLE: Main1.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Process the data from the
% AuCuEdge/2005.06.23.LANL
% and
% ThreeCarbonWires/2005.03.11.LANL
% directories
% Fit single Gaussian PSFs.
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AuCuEdge/2005.06.23.LANL/LANL.mat contains
% Measured =
% y: [273x1 double]
% d: [273x1 double]
% psf: [273x1 double]
% dy: 3.6600e-07

31



%
% Simulated683 =
% y: [273x1 double]
% wv: [273x1 double]
% st: [273x1 double]
% dy: 3.6600e-07
%
% Simulated716 =
% y: [273x1 double]
% wv: [273x1 double]
% st: [273x1 double]
% dy: 3.6600e-07
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load ../AuCuEdge/2005.06.23.LANL/LANL.mat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ThreeCarbonWires/2005.03.11.LANL/LANL.03.11.2005.m at contains
% MeasuredDouble =
% y: [273x1 double]
% d: [273x1 double]
% dy: 3.6700e-07
%
% MeasuredSingle =
% y: [273x1 double]
% d: [273x1 double]
% dy: 3.6700e-07
%
% SimDouble =
% name: ’3/11/2005 LANL, 0 rotation, double wire’
% y: [273x1 double]
% st: [273x1 double]
% wv: [273x1 double]
% dy: 3.6700e-07
%
% SimSingle =
% name: ’3/11/2005 LANL, 0 rotation, single wire’
% y: [273x1 double]
% st: [273x1 double]
% wv: [273x1 double]
% dy: 3.6700e-07
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load ../ThreeCarbonWires/2005.03.11.LANL/LANL.03.11. 2005.mat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preliminary definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
um = 1e-6;
mm = 1e-3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Range to be plotted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Width = 0.06 * mm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fit the data using single Gaussians
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigma0 = 2.5 * um;
sigma0 = 3 * um;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tinker with options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opts = optimset(optimset(’fminsearch’),...

’tolx’,1e-10,...
’tolfun’,1e-10,...
’MaxIter’, 400*length(sigma0),...
’MaxFunEvals’,600*length(sigma0));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Solve for the Gaussian fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y = Measured.y;
md = Measured.d;
psfm = Measured.psf;
sd = Simulated683.wv;
dy = Measured.dy;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sigma1 is fit by blurring the edge data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sigma1,fval,iflag,output]=fminsearch(@(o)FitLANLEd ge(o,y,md,sd),sigma0,opts);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sigma2 is fit directly to the PSF. There is a difference.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[sigma2,fval,iflag,output]=fminsearch(@(o)FitLANLPS F(o,y,psfm),sigma0,opts);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define Stefan’s sigma
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigmas = 3.4 * um;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Print results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’fval : %g\n’,fval);
fprintf(1,’iflag : %d\n’,iflag);
fprintf(1,’Output Message: %s\n’,output.message);
fprintf(1,’sigma = ’);fprintf(1,’%g ’,[sigma1 sigma2]/u m);fprintf(1,’micrometers\n’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the PSFs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psf1 = multigaussian(y,[],sigma1,0);
psf1 = psf1/sum(psf1);
psf2 = multigaussian(y,[],sigma2,0);
psf2 = psf2/sum(psf2);
psfs = multigaussian(y,[],sigmas,0);
psfs = psfs/sum(psfs);

fprintf(1,’[sum(psf1) max(psf1) dy/(sqrt(2pi sigma1)] = [%g %g %g]\n’,...
sum(psf1),max(psf1),dy/(sqrt(2*pi)*sigma1));
fprintf(1,’[sum(psf2) max(psf2) dy/(sqrt(2pi sigma2)] = [%g %g %g]\n’,...
sum(psf2),max(psf2),dy/(sqrt(2*pi)*sigma2));
fprintf(1,’[sum(psfs) max(psfs) dy/(sqrt(2pi sigmas)] = [%g %g %g]\n’,...
sum(psfs),max(psfs),dy/(sqrt(2*pi)*sigmas));

[fwhm1 hm1] = FullWidthHalfMax(y/mm,psf1);
[fwhm2 hm2] = FullWidthHalfMax(y/mm,psf2);
[fwhm3 hm3] = FullWidthHalfMax(y/mm,psfs);
[fwhm4 hm4] = FullWidthHalfMax(y/mm,Measured.psf);
fwhm = [diff(fwhm1)*mm/um
diff(fwhm2)*mm/um
diff(fwhm3)*mm/um
diff(fwhm4)*mm/um

];
hm = [ hm1 hm2 hm3 hm4 ];
pstr = { [sprintf(’\\sigma = ’) sprintf(’%5.2f ’,[sigma1 si gma2]/um) sprintf(’\\mum’)];

[sprintf(’fwhm = ’) sprintf(’%5.2f ’,fwhm) sprintf(’\\mu m’)];
[sprintf(’hm = ’) sprintf(’%5.2f ’,hm)];

};

str = ’Direct Detected Au/Cu Edge One Gaussian PSFs’;
cmd = sprintf(’fetchfigure(’’%s’’);clf’,str);
fprintf(1,’%s\n’,cmd); eval( cmd );

hp = plot(y/mm,psfm,’g’,...
y/mm,psf1,’b’,...
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y/mm,psf2,’k’,...
y/mm,psfs,’r’);

set(gca,’xlim’,Width*[-1 1]/4/mm)
set(hp,’linewidth’,1);set(hp(1),’linewidth’,2)
ht = [ title(str); xlabel(’y (mm)’) ];
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)

xlim = get(gca,’xlim’); Dxlim = diff(xlim);
ylim = get(gca,’ylim’); Dylim = diff(ylim);
dytxt = 0.1 * Dylim;
for m=1:length(pstr)

htxt = text(xlim(1)+0.025*Dxlim,ylim(2)-m*dytxt,pstr( m));
set(htxt,’fontsize’,12);

end
hleg = legend(’Measured’,...

sprintf(’\\sigma=%5.2f\\mum (fit to blurred data)’,sigm a1/um),...
sprintf(’\\sigma=%5.2f\\mum (fit to measured PSF)’,sigm a2/um),...
sprintf(’\\sigma=%5.2f\\mum (Stefan)’,sigmas/um));

set(hleg,’box’,’off’,’fontsize’,10)
cmd = ’print -depsc Figure01.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Blur the simulated edge data with the sigma2 Gaussian fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
omega2 = [sum(multigaussian(y,[],sigma2,0)) sigma2 0];
Simulated683.wvb = ApplyMultiGaussianBlur(y,Simulated 683.wv,omega2);
Simulated683.stb = ApplyMultiGaussianBlur(y,Simulated 683.st,omega2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot edge blurred data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure(’LANL Au/Cu Blurred’);clf

hp = plot(y/mm,Measured.d,’g’,...
y/mm,Simulated683.wvb,’b’,...
y/mm,Simulated683.stb,’r--’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
axis tight
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Blurred Simulated Au/Cu Edge’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,...

’Wave Simulation’,...
’Straight Ray Simulation’,’location’,’SouthEast’);

cmd = ’print -depsc Figure02.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now start working with the carbon fiber data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’Measured single dy : %g micrometers\n’,Measur edSingle.dy/um);
fprintf(1,’Measured double dy : %g micrometers\n’,Measur edDouble.dy/um);
fprintf(1,’Simulated single dy: %g micrometers\n’,SimSi ngle.dy/um);
fprintf(1,’Simulated double dy: %g micrometers\n’,SimDo uble.dy/um);

yf = MeasuredDouble.y;
dyf = MeasuredDouble.dy;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Measured data single wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mds = MeasuredSingle.d;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Measured data double wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mdd = MeasuredDouble.d;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulated data single wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sds = SimSingle.wv;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulated data double wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sdd = SimDouble.wv;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fit the data.
% Fit the single and double wires separately
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Values for initial guess
sigma0 = 3 * [ 1 1 ] * um;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tinker with options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opts = optimset(optimset(’fminsearch’),...

’tolx’,1e-10,...
’tolfun’,1e-10,...
’MaxIter’, 400*length(sigma0),...
’MaxFunEvals’,600*length(sigma0));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solve for the Gaussian fit
[sigmaf,fval,iflag,output]=fminsearch(@(o)FitLANLFi ber(o,yf,mds,mdd,sds,sdd),...

sigma0,opts);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’fval : %g\n’,fval);
fprintf(1,’iflag : %d\n’,iflag);
fprintf(1,’Output Message: %s\n’,output.message);
fprintf(1,’sigma = ’);fprintf(1,’%g ’,sigmaf/um);fprin tf(1,’micrometers\n’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the fitted PSF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psff1 = multigaussian(yf,[],sigmaf(1),0);
psff2 = multigaussian(yf,[],sigmaf(2),0);
fprintf(1,’[sum(psff1) max(psff1) dy/(sqrt(2pi sigma1) ] = [%g %g %g]\n’,...
sum(psff1),max(psff1),dyf/(sqrt(2*pi)*sigmaf(1)));
fprintf(1,’[sum(psff2) max(psff2) dy/(sqrt(2pi sigma2) ] = [%g %g %g]\n’,...
sum(psff2),max(psff2),dyf/(sqrt(2*pi)*sigmaf(2)));
[fwhm1 hm1] = FullWidthHalfMax(yf/mm,psff1);
[fwhm2 hm2] = FullWidthHalfMax(yf/mm,psff2);
fwhm = [diff(fwhm1)*mm/um diff(fwhm2)*mm/um];
hm = [ hm1 hm2 ];
pstr = { [sprintf(’\\sigma = ’) sprintf(’%5.2f ’,sigmaf/um ) sprintf(’\\mum’)];

[sprintf(’fwhm = ’) sprintf(’%5.2f ’,fwhm) sprintf(’\\mu m’)];
[sprintf(’hm = ’) sprintf(’%5.2f ’,hm)];

};

str = ’March 11, 2005, LANL Separate One Gaussian PSFs’;
cmd = sprintf(’fetchfigure(’’%s’’);clf’,str);
fprintf(1,’%s\n’,cmd); eval( cmd );

hp = plot(yf/mm,psff1,’b’,yf/mm,psff2,’r’);
set(gca,’xlim’,Width*[-1 1]/4/mm)
set(hp,’linewidth’,1)
ht = [ title(str); xlabel(’y (mm)’) ];
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set(ht,’fontsize’,14)
set(gca,’fontsize’,14)

xlim = get(gca,’xlim’); Dxlim = diff(xlim);
ylim = get(gca,’ylim’); Dylim = diff(ylim);
dytxt = 0.1 * Dylim;
for m=1:length(pstr)

htxt = text(xlim(1)+0.025*Dxlim,ylim(2)-m*dytxt,pstr( m));
set(htxt,’fontsize’,12);

end
legend(’Single Fiber’,’Double Fiber’);
cmd = ’print -depsc Figure03.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot all the PSFs together
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure(’All PSFs’);clf
hp = plot(y/mm , psfm,’g’,...

y/mm , psf2,’k’,...
y/mm , psfs,’r’,...
yf/mm, psff1,’b’,...
yf/mm, psff2,’m’);

set(gca,’xlim’,Width*[-1 1]/4/mm)
set(hp,’linewidth’,1);set(hp(1),’linewidth’,2)
ht = [ title(’Comparison of all PSFs’); xlabel(’y (mm)’) ];
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)

hleg = legend(’Measured Edge’,...
sprintf(’\\sigma=%5.2f\\mum (fit to measured PSF)’,sigm a2/um),...
sprintf(’\\sigma=%5.2f\\mum (Stefan)’,sigmas/um),...
sprintf(’\\sigma=%5.2f\\mum (fit to single fiber)’,sigm af(1)/um),...
sprintf(’\\sigma=%5.2f\\mum (fit to double fiber)’,sigm af(2)/um));

set(hleg,’box’,’off’,’fontsize’,10)
cmd = ’print -depsc Figure04.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
asciify(’MeasuredEdgePSF.txt’,y/um, Measured.psf);
asciify(sprintf(’%05.2fSigmaGaussian.txt’,sigma2/um ),y/um, psf2);
asciify(sprintf(’%05.2fSigmaGaussian.txt’,sigmas/um ),y/um, psfs);
asciify(sprintf(’%05.2fSigmaGaussian.txt’,sigmaf(1) /um),yf/um, psff1);
asciify(sprintf(’%05.2fSigmaGaussian.txt’,sigmaf(2) /um),yf/um, psff2);
asciify(’SimSingleFiberWave.txt’,yf/um, SimSingle.wv );
asciify(’SimSingleFiberStraight.txt’,yf/um, SimSingl e.st);
asciify(’SimDoubleFiberWave.txt’,yf/um, SimDouble.wv );
asciify(’SimDoubleFiberStraight.txt’,yf/um, SimDoubl e.st);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convolve the simulated carbon fiber data with the measured PSF.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SimDouble.wvbm = Convolve( SimDouble.wv , Measured.psf );
SimSingle.wvbm = Convolve( SimSingle.wv , Measured.psf );
SimDouble.stbm = Convolve( SimDouble.st , Measured.psf );
SimSingle.stbm = Convolve( SimSingle.st , Measured.psf );

asciify(’SimSingleFiberWaveMeasuredPSF.txt’,y/um, Si mSingle.wvbm);
asciify(’SimSingleFiberStraightMeasuredPSF.txt’,y/u m, SimSingle.stbm);
asciify(’SimDoubleFiberWaveMeasuredPSF.txt’,y/um, Si mDouble.wvbm);
asciify(’SimDoubleFiberStraightMeasuredPSF.txt’,y/u m, SimDouble.stbm);

fetchfigure(’03/11/2005 LANL Fiber Blurred with Measured PSF’);clf
subplot(122)
hp = plot(y/mm,MeasuredDouble.d,’g’,...

y/mm,SimDouble.wvbm,’b’,...
y/mm,SimDouble.stbm,’r’);
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set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Measured PSF, Double Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

subplot(121)
hp = plot(y/mm,MeasuredSingle.d,’g’,...

y/mm,SimSingle.wvbm,’b’,...
y/mm,SimSingle.stbm,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Measured PSF, Single Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure05.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convolve the simulated carbon fiber data with the measured PSF.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SimDouble.wvb2 = Convolve( SimDouble.wv , psf2 );
SimSingle.wvb2 = Convolve( SimSingle.wv , psf2 );
SimDouble.stb2 = Convolve( SimDouble.st , psf2 );
SimSingle.stb2 = Convolve( SimSingle.st , psf2 );

asciify(sprintf(’SimSingleFiberWave%05.2fPSF.txt’,s igma2/um),y/um, SimSingle.wvb2);
asciify(sprintf(’SimSingleFiberStraight%05.2fPSF.tx t’,sigma2/um),y/um, SimSingle.stb2);
asciify(sprintf(’SimDoubleFiberWave%05.2fPSF.txt’,s igma2/um),y/um, SimDouble.wvb2);
asciify(sprintf(’SimDoubleFiberStraight%05.2fPSF.tx t’,sigma2/um),y/um, SimDouble.stb2);

fetchfigure(’03/11/2005 LANL Fiber Blurred with Fit to Mea sured PSF’);clf
subplot(122)
hp = plot(y/mm,MeasuredDouble.d,’g’,...

y/mm,SimDouble.wvb2,’b’,...
y/mm,SimDouble.stb2,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured PSF, Double Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

subplot(121)
hp = plot(y/mm,MeasuredSingle.d,’g’,...

y/mm,SimSingle.wvb2,’b’,...
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y/mm,SimSingle.stb2,’r’);
set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured PSF, Single Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure06.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convolve the simulated carbon fiber data with the PSFs fit t o the
% measured carbon fiber data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SimDouble.wvbf2 = Convolve( SimDouble.wv , psff2 );
SimSingle.wvbf1 = Convolve( SimSingle.wv , psff1 );
SimDouble.stbf2 = Convolve( SimDouble.st , psff2 );
SimSingle.stbf1 = Convolve( SimSingle.st , psff1 );

asciify(sprintf(’SimSingleFiberWave%05.2fPSF.txt’,s igmaf(1)/um),y/um, SimSingle.wvbf1);
asciify(sprintf(’SimSingleFiberStraight%05.2fPSF.tx t’,sigmaf(1)/um),y/um, SimSingle.stbf1);
asciify(sprintf(’SimDoubleFiberWave%05.2fPSF.txt’,s igmaf(2)/um),y/um, SimDouble.wvbf2);
asciify(sprintf(’SimDoubleFiberStraight%05.2fPSF.tx t’,sigmaf(2)/um),y/um, SimDouble.stbf2);

fetchfigure(’03/11/2005 LANL Fiber Blurred with Fit to Mea sured Fiber Data’);clf
subplot(122)
hp = plot(y/mm,MeasuredDouble.d,’g’,...

y/mm,SimDouble.wvbf2,’b’,...
y/mm,SimDouble.stbf2,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured Data, Double Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

subplot(121)
hp = plot(y/mm,MeasuredSingle.d,’g’,...

y/mm,SimSingle.wvbf1,’b’,...
y/mm,SimSingle.stbf1,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured Data, Single Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure07.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convolve the simulated carbon fiber data with Stefan’s PSF .
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SimDouble.wvbs = Convolve( SimDouble.wv , psfs );
SimSingle.wvbs = Convolve( SimSingle.wv , psfs );
SimDouble.stbs = Convolve( SimDouble.st , psfs );
SimSingle.stbs = Convolve( SimSingle.st , psfs );

fetchfigure(’03/11/2005 LANL Fiber Blurred with Stefan’’ s PSF’);clf
subplot(122)
hp = plot(y/mm,MeasuredDouble.d,’g’,...

y/mm,SimDouble.wvbs,’b’,...
y/mm,SimDouble.stbs,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Stefan’’s \sigma, Double Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

subplot(121)
hp = plot(y/mm,MeasuredSingle.d,’g’,...

y/mm,SimSingle.wvbs,’b’,...
y/mm,SimSingle.stbs,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Stefan’’s \sigma, Single Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure08.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);

C.4 Code to Process the Data Sets II
This code,Main2.m , fits the data to a sum of two Gaussians.

%************************************************** ***************************
%
% TITLE: Main2.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Process the data from the
% AuCuEdge/2005.06.23.LANL
% and
% ThreeCarbonWires/2005.03.11.LANL
% directories
% Fit double Gaussian PSFs.
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:

39



%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% AuCuEdge/2005.06.23.LANL/LANL.mat contains
% Measured =
% y: [273x1 double]
% d: [273x1 double]
% psf: [273x1 double]
% dy: 3.6600e-07
%
% Simulated683 =
% y: [273x1 double]
% wv: [273x1 double]
% st: [273x1 double]
% dy: 3.6600e-07
%
% Simulated716 =
% y: [273x1 double]
% wv: [273x1 double]
% st: [273x1 double]
% dy: 3.6600e-07
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load ../AuCuEdge/2005.06.23.LANL/LANL.mat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ThreeCarbonWires/2005.03.11.LANL/LANL.03.11.2005.m at contains
% MeasuredDouble =
% y: [273x1 double]
% d: [273x1 double]
% dy: 3.6700e-07
%
% MeasuredSingle =
% y: [273x1 double]
% d: [273x1 double]
% dy: 3.6700e-07
%
% SimDouble =
% name: ’3/11/2005 LANL, 0 rotation, double wire’
% y: [273x1 double]
% st: [273x1 double]
% wv: [273x1 double]
% dy: 3.6700e-07
%
% SimSingle =
% name: ’3/11/2005 LANL, 0 rotation, single wire’
% y: [273x1 double]
% st: [273x1 double]
% wv: [273x1 double]
% dy: 3.6700e-07
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
load ../ThreeCarbonWires/2005.03.11.LANL/LANL.03.11. 2005.mat
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preliminary definitions
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
um = 1e-6;
mm = 1e-3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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% Range to be plotted
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Width = 0.06 * mm;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fit the data using double Gaussians
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigma0 = 2.5 * um;
alpha0 = 1;
alpha0 = 0.06;
omega0 = [ alpha0 alpha0 sigma0 sigma0/10 -um um ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tinker with options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opts = optimset(optimset(’fminsearch’),...

’tolx’,1e-10,...
’tolfun’,1e-10,...
’MaxIter’, 500*length(omega0),...
’MaxFunEvals’,800*length(omega0));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solve for the Gaussian fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
y = Measured.y;
md = Measured.d;
psfm = Measured.psf;
sd = Simulated683.wv;
dy = Measured.dy;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sigma1 is fit by blurring the edge data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[omega1,fval,iflag,output]=fminsearch(@(o)FitLANLEd ge2(o,y,md,sd),omega0,opts);
fprintf(1,’######################################## ########\n’);
fprintf(1,’%s\n’,output.message);
fprintf(1,’######################################## ########\n’);
Ng = length( omega1 ) / 3;
% omega = [ alpha alpha ... sigma sigma ... x0 x0 ... ];
alpha1 = omega1(1:Ng);
sigma1 = omega1(Ng+1:2*Ng);
x01 = omega1(2*Ng+1:3*Ng);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fit the data using double Gaussians
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigma0 = 2.96 * um;
alpha0 = 0.05;
omega0 = [ alpha0 2*alpha0 sigma0 sigma0/10 -um um ];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Sigma2 is fit directly to the PSF. There is a difference.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[omega2,fval,iflag,output]=fminsearch(@(o)FitLANLPS F2(o,y,psfm),omega0,opts);
fprintf(1,’######################################## ########\n’);
fprintf(1,’%s\n’,output.message);
fprintf(1,’######################################## ########\n’);
Ng = length( omega1 ) / 3;
% omega = [ alpha alpha ... sigma sigma ... x0 x0 ... ];
alpha2 = omega2(1:Ng);
sigma2 = omega2(Ng+1:2*Ng);
x02 = omega2(2*Ng+1:3*Ng);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Define Stefan’s sigma
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sigmas = 3.4 * um;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Print results
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’fval : %g\n’,fval);
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fprintf(1,’iflag : %d\n’,iflag);
fprintf(1,’Output Message: %s\n’,output.message);

fprintf(1,’sigma1 = ’);fprintf(1,’%g ’,sigma1/um);fpri ntf(1,’micrometers\n’);
fprintf(1,’sigma2 = ’);fprintf(1,’%g ’,sigma2/um);fpri ntf(1,’micrometers\n’);

fprintf(1,’alpha1 = ’);fprintf(1,’%g ’,alpha1);fprintf (1,’\n’);
fprintf(1,’alpha2 = ’);fprintf(1,’%g ’,alpha2);fprintf (1,’\n’);

fprintf(1,’x01 = ’);fprintf(1,’%g ’,x01/um);fprintf(1, ’micrometers\n’);
fprintf(1,’x02 = ’);fprintf(1,’%g ’,x02/um);fprintf(1, ’micrometers\n’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the PSFs
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psf1 = multigaussian(y,omega1);
psf1 = psf1/sum(psf1);
psf2 = multigaussian(y,omega2);
psf2 = psf2/sum(psf2);
psfs = multigaussian(y,[],sigmas,0);
psfs = psfs/sum(psfs);

[fwhm1 hm1] = FullWidthHalfMax(y/mm,psf1);
[fwhm2 hm2] = FullWidthHalfMax(y/mm,psf2);
[fwhm3 hm3] = FullWidthHalfMax(y/mm,psfs);
[fwhm4 hm4] = FullWidthHalfMax(y/mm,Measured.psf);
fwhm = [
% diff(fwhm1)*mm/um

diff(fwhm2)*mm/um
diff(fwhm3)*mm/um
diff(fwhm4)*mm/um

];
hm = [ hm1 hm2 hm3 hm4 ];
hm = [ hm2 hm3 hm4 ];
pstr = {
% [sprintf(’\\sigma1 = ’) sprintf(’%5.2f ’,sigma1/um) spr intf(’\\mum’)];

[sprintf(’\\sigma = ’) sprintf(’%5.2f ’,sigma2/um) sprin tf(’\\mum’)];
% [sprintf(’\\alpha1 = ’) sprintf(’%5.2f ’,alpha1) ];

[sprintf(’\\alpha = ’) sprintf(’%5.2f ’,alpha2) ];
% [sprintf(’x01 = ’) sprintf(’%5.2f ’,x01/um) sprintf(’\\ mum’)];

[sprintf(’x0 = ’) sprintf(’%5.2f ’,x02/um) sprintf(’\\mu m’)];
[sprintf(’fwhm = ’) sprintf(’%5.2f ’,fwhm) sprintf(’\\mu m’)];
[sprintf(’hm = ’) sprintf(’%5.2f ’,hm)];

};

str = ’LANL Au/Cu Edge One Gaussian PSFs’;
cmd = sprintf(’fetchfigure(’’%s’’);clf’,str);
fprintf(1,’%s\n’,cmd); eval( cmd );

if 1
hp = plot(y/um,psfm,’g’,...

y/um,psf2,’b’,...
y/um,psfs,’r’);

else
hp = plot(y/um,psfm,’g’,...

y/um,psf1,’k’,...
y/um,psf2,’b’,...
y/um,psfs,’r’);

end

set(gca,’xlim’,Width*[-1 1]/4/um)
set(hp,’linewidth’,1);set(hp(1),’linewidth’,2)
ht = [ title(str); xlabel(’y (\mum)’) ];
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
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xlim = get(gca,’xlim’); Dxlim = diff(xlim);
ylim = get(gca,’ylim’); Dylim = diff(ylim);
dytxt = 0.1 * Dylim;
for m=1:length(pstr)

htxt = text(xlim(1)+0.025*Dxlim,ylim(2)-m*dytxt,pstr( m));
set(htxt,’fontsize’,12);

end
if 1

hleg = legend(’Measured’,...
’Fit to measured PSF’,...
sprintf(’\\sigma=%5.2f\\mum (Stefan)’,sigmas/um));
else

hleg = legend(’Measured’,...
’Fit to blurred data’,...
’Fit to measured PSF’,...
sprintf(’\\sigma=%5.2f\\mum (Stefan)’,sigmas/um));
end

set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure01.2.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Blur the simulated edge data with the omega2 multi-Gaussia n fit
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Simulated683.wvb = ApplyMultiGaussianBlur(y,Simulated 683.wv,omega2);
Simulated683.stb = ApplyMultiGaussianBlur(y,Simulated 683.st,omega2);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot edge blurred data
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure(’LANL Au/Cu Blurred’);clf

hp = plot(y/mm,Measured.d,’g’,...
y/mm,Simulated683.wvb,’b’,...
y/mm,Simulated683.stb,’r--’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
axis tight
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Blurred Simulated Au/Cu Edge’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,...

’Wave Simulation’,...
’Straigt Ray Simulation’,’location’,’SouthEast’);

cmd = ’print -depsc Figure02.2.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Now start working with the carbon fiber data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’Measured single dy : %g micrometers\n’,Measur edSingle.dy/um);
fprintf(1,’Measured double dy : %g micrometers\n’,Measur edDouble.dy/um);
fprintf(1,’Simulated single dy: %g micrometers\n’,SimSi ngle.dy/um);
fprintf(1,’Simulated double dy: %g micrometers\n’,SimDo uble.dy/um);

yf = MeasuredDouble.y;
dyf = MeasuredDouble.dy;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

43



% Measured data single wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mds = MeasuredSingle.d;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Measured data double wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
mdd = MeasuredDouble.d;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulated data single wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sds = SimSingle.wv;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Simulated data double wire
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sdd = SimDouble.wv;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Fit the data.
% Fit the single and double wires separately
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Values for initial guess
sigma0 = [3.90 4.28]*um;
alpha0 = 0.035;
omega0 = [

alpha0 alpha0 sigma0(1) sigma0(1) -um um ...
alpha0 alpha0 sigma0(2) sigma0(2) -um um

];
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Tinker with options
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
opts = optimset(optimset(’fminsearch’),...

’tolx’,1e-10,...
’tolfun’,1e-10,...
’MaxIter’, 600*length(omega0),...
’MaxFunEvals’,800*length(omega0));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Solve for the Gaussian fit
[omegaf,fval,iflag,output]=fminsearch(@(o)FitLANLFi ber2(o,yf,mds,mdd,sds,sdd),...

omega0,opts);
fprintf(1,’######################################## ########\n’);
fprintf(1,’%s\n’,output.message);
fprintf(1,’######################################## ########\n’);
No = length( omegaf );
omegaf1 = omegaf( 1:No/2 );
omegaf2 = omegaf( No/2+1:No );
Ng = length( omegaf1 ) / 3;
% omega = [ alpha alpha ... sigma sigma ... x0 x0 ... ];
alphaf1 = omegaf1(1:Ng);
sigmaf1 = omegaf1(Ng+1:2*Ng);
x0f1 = omegaf1(2*Ng+1:3*Ng);
alphaf2 = omegaf2(1:Ng);
sigmaf2 = omegaf2(Ng+1:2*Ng);
x0f2 = omegaf2(2*Ng+1:3*Ng);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fprintf(1,’fval : %g\n’,fval);
fprintf(1,’iflag : %d\n’,iflag);
fprintf(1,’Output Message: %s\n’,output.message);

fprintf(1,’sigmaf1 = ’);fprintf(1,’%g ’,sigmaf1/um);fp rintf(1,’micrometers\n’);
fprintf(1,’sigmaf2 = ’);fprintf(1,’%g ’,sigmaf2/um);fp rintf(1,’micrometers\n’);

fprintf(1,’alphaf1 = ’);fprintf(1,’%g ’,alphaf1);fprin tf(1,’\n’);
fprintf(1,’alphaf2 = ’);fprintf(1,’%g ’,alphaf2);fprin tf(1,’\n’);

fprintf(1,’x0f1 = ’);fprintf(1,’%g ’,x0f1/um);fprintf( 1,’micrometers\n’);
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fprintf(1,’x0f2 = ’);fprintf(1,’%g ’,x0f2/um);fprintf( 1,’micrometers\n’);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Compute the fitted PSF
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
psff1 = multigaussian(yf,omegaf1);
psff1 = psff1 / sum( psff1 );
psff2 = multigaussian(yf,omegaf2);
psff2 = psff2 / sum( psff2 );

[fwhm1 hm1] = FullWidthHalfMax(yf/mm,psff1);
[fwhm2 hm2] = FullWidthHalfMax(yf/mm,psff2);
fwhm = [diff(fwhm1)*mm/um diff(fwhm2)*mm/um];
hm = [ hm1 hm2 ];
pstr = {

[sprintf(’\\sigma1 = ’) sprintf(’%5.2f ’,sigmaf1/um) spr intf(’\\mum’)];
[sprintf(’\\sigma2 = ’) sprintf(’%5.2f ’,sigmaf2/um) spr intf(’\\mum’)];
[sprintf(’\\alpha1 = ’) sprintf(’%5.2f ’,alphaf1)];
[sprintf(’\\alpha2 = ’) sprintf(’%5.2f ’,alphaf2)];
[sprintf(’x01 = ’) sprintf(’%5.2f ’,x0f1/um) sprintf(’\\ mum’)];
[sprintf(’x02 = ’) sprintf(’%5.2f ’,x0f2/um) sprintf(’\\ mum’)];
[sprintf(’fwhm = ’) sprintf(’%5.2f ’,fwhm) sprintf(’\\mu m’)];
[sprintf(’hm = ’) sprintf(’%5.2f ’,hm)];

};

str = ’March 11, 2005, LANL Separate Two Gaussian PSFs’;
cmd = sprintf(’fetchfigure(’’%s’’);clf’,str);
fprintf(1,’%s\n’,cmd); eval( cmd );

hp = plot(yf/mm,psff1,’b’,yf/mm,psff2,’r’);
set(gca,’xlim’,Width*[-1 1]/4/mm)
set(hp,’linewidth’,1)
ht = [ title(str); xlabel(’y (mm)’) ];
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)

xlim = get(gca,’xlim’); Dxlim = diff(xlim);
ylim = get(gca,’ylim’); Dylim = diff(ylim);
dytxt = 0.1 * Dylim;
for m=1:length(pstr)

htxt = text(xlim(1)+0.025*Dxlim,ylim(2)-m*dytxt,pstr( m));
set(htxt,’fontsize’,12);

end
legend(’Single Fiber’,’Double Fiber’);
cmd = ’print -depsc Figure03.2.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Plot all the PSFs together
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fetchfigure(’All PSFs’);clf
hp = plot(y/mm , psfm,’g’,...

y/mm , psf2,’k’,...
y/mm , psfs,’r’,...
yf/mm, psff1,’b’,...
yf/mm, psff2,’m’);

set(gca,’xlim’,Width*[-1 1]/4/mm)
set(hp,’linewidth’,1);set(hp(1),’linewidth’,2)
ht = [ title(’Comparison of all PSFs’); xlabel(’y (mm)’) ];
set(ht,’fontsize’,14)
set(gca,’fontsize’,14)

hleg = legend(’Measured Edge’,...
sprintf(’\\sigma=[%5.2f %5.2f]\\mum (Fit to measured PSF )’,...
sigma2(1)/um,sigma2(2)/um),...
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sprintf(’\\sigma=%5.2f\\mum (Stefan)’,sigmas/um),...
sprintf(’\\sigma=[%5.2f %5.2f]\\mum (Fit to single fiber )’,...
sigmaf1(1)/um,sigmaf1(2)/um),...
sprintf(’\\sigma=[%5.2f %5.2f]\\mum (Fit to double fiber )’,...
sigmaf2(1)/um,sigmaf2(2)/um));

set(hleg,’box’,’off’,’fontsize’,10)
cmd = ’print -depsc Figure04.2.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convolve the simulated carbon fiber data with the measured PSF.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SimDouble.wvb2 = Convolve( SimDouble.wv , psf2 );
SimSingle.wvb2 = Convolve( SimSingle.wv , psf2 );
SimDouble.stb2 = Convolve( SimDouble.st , psf2 );
SimSingle.stb2 = Convolve( SimSingle.st , psf2 );

fetchfigure(’03/11/2005 LANL Fiber Blurred with Fit to Mea sured PSF’);clf
subplot(122)
hp = plot(y/mm,MeasuredDouble.d,’g’,...

y/mm,SimDouble.wvb2,’b’,...
y/mm,SimDouble.stb2,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured PSF, Double Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

subplot(121)
hp = plot(y/mm,MeasuredSingle.d,’g’,...

y/mm,SimSingle.wvb2,’b’,...
y/mm,SimSingle.stb2,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured PSF, Single Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure06.2.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Convolve the simulated carbon fiber data with the PSFs fit t o the
% measured carbon fiber data.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
SimDouble.wvbf2 = Convolve( SimDouble.wv , psff2 );
SimSingle.wvbf1 = Convolve( SimSingle.wv , psff1 );
SimDouble.stbf2 = Convolve( SimDouble.st , psff2 );
SimSingle.stbf1 = Convolve( SimSingle.st , psff1 );

fetchfigure(’03/11/2005 LANL Fiber Blurred with Fit to Mea sured Fiber Data’);clf
subplot(122)
hp = plot(y/mm,MeasuredDouble.d,’g’,...

y/mm,SimDouble.wvbf2,’b’,...
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y/mm,SimDouble.stbf2,’r’);
set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured Data, Double Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

subplot(121)
hp = plot(y/mm,MeasuredSingle.d,’g’,...

y/mm,SimSingle.wvbf1,’b’,...
y/mm,SimSingle.stbf1,’r’);

set(hp,’linewidth’,1);
set(hp(1),’linewidth’,2);
set(gca,’ylim’,[0.80 1.1]);
set(gca,’xlim’,Width*[-1 1]/2/mm)
ht = [ xlabel(’y (mm)’);

ylabel(’Transmission’);
title(’Fit to Measured Data, Single Fiber’)];

set(ht,’fontsize’,14)
set(gca,’fontsize’,14)
hleg = legend(’Measured’,’Wave’,’Straight Ray’,’locati on’,’SouthEast’);
set(hleg,’box’,’off’,’fontsize’,10)

cmd = ’print -depsc Figure07.2.eps’;
fprintf(1,’%s\n’,cmd); eval(cmd);

C.5 Apply a Multi-Gaussian PSF to a Data set
function [ db , g ] = ApplyMultiGaussianBlur( y , d , omega )
%************************************************** ***************************
%
% TITLE: ApplyMultiGaussianBlur.m
% AUTHOR: Sean K. Lehman
% DATE: June 28, 2005
% FUNCTION: Apply a multi-Gaussian blur to the simulated dat a.
% SYNTAX:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
% Ensure the y variable is centered about zero

y = y - mean( y );

% Sample interval
dy = y(2) - y(1);

% Construct the multigaussian
g = multigaussian(y,omega);
g = g / sum( g );

% g = g / ( dy * sum( g ) );
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% Apply the blur
Ny = length( y );
mud = mean( d );
d = d - mud;
Nconv = 2*Ny - 1;
N1 = fix( (Nconv-Ny) / 2 );
N2 = N1 + Ny - 1;
db = conv( d , g );
db = db(N1:N2) + mud;

C.6 Convolution Routine
function db = Convolve( d , g )
%************************************************** ***************************
%
% TITLE: Convolve.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION:
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
% Get lengths

Nd = length( d );
Ng = length( g );
Ny = min([ Nd Ng ]);

% Apply the blur
mud = mean( d );
d = d - mud;
Nconv = Nd + Ng - 1;
N1 = fix( (Nconv-Ny) / 2 );
N2 = N1 + Ny - 1;
db = conv( d , g );
db = db(N1:N2) + mud;

C.7 Multi-Gaussian Function Generator
function [f g] = multigaussian(x,alpha,sigma,x0)
%************************************************** ***************************
%
% TITLE: multigaussian.m
% AUTHOR: Sean K. Lehman
% DATE: June 27, 2005
% FUNCTION: f = multigaussian(x,alpha,sigma,x0)
% [f g] = multigaussian(x,alpha,sigma,x0)
% f = multigaussian(x,omega)
% [f g] = multigaussian(x,omega)
% SYNTAX:
%

48



% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
Normalize = 0;

if nargin == 2
omega = alpha;
% Number of Gaussians:
Ng = length( omega ) / 3;
% omega = [ alpha alpha ... sigma sigma ... x0 x0 ... ];
alpha = omega(1:Ng);
sigma = omega(Ng+1:2*Ng);
x0 = omega(2*Ng+1:3*Ng);

else
% Number of Gaussians:
if isempty( alpha )

Normalize = 1;
Ng = length( sigma );

else
Ng = length( alpha );

end
end

if Ng ˜= length( sigma )
fprintf(1,’Number of amplitudes differs from the number of widths\n’);
return

end

if Ng ˜= length( x0 )
fprintf(1,’Number of amplitudes differs from the number of shifts\n’);
return

end

Nx = length( x );
g = zeros( [ Nx Ng ] );

% Construct the multigaussian
if Normalize

for n = 1:Ng
arg = ((x-x0(n))/sigma(n)).ˆ2 ;
g(:,n) = exp(-arg/2);

end
f = sum( g , 2 );
f = f / sum(f);

else
for n = 1:Ng

arg = ((x-x0(n))/sigma(n)).ˆ2 ;
g(:,n) = alpha(n) * exp(-arg/2);

end
f = sum( g , 2 );

end

if 0
fetchfigure(’multigaussian’);clf
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plot(x,f)
end

C.8 LMS Error Function to Fit a Single Gaussian to the Edge Data via Con-
volution

function err = FitLANLEdge(sigma,y,md,sd)
%************************************************** ***************************
%
% TITLE: FitLANLEdge.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Error function called by optimization routine i n Main.m
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function called by fminsearch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
arg = (y/sigma).ˆ2;
f = exp(-arg/2);
omega = [ sum(f) sigma 0 ];

b = ApplyMultiGaussianBlur( y , sd , omega );
model = b;
data = md;
err = sqrt( sum( (model - data).ˆ2 ) );

C.9 LMS Error Function to Fit a Double Gaussian to the Edge Data via
Convolution

function err = FitLANLEdge2(omega,y,md,sd)
%************************************************** ***************************
%
% TITLE: FitLANLEdge2.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Error function called by optimization routine i n Main.m
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
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%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function called by fminsearch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
b = ApplyMultiGaussianBlur( y , sd , omega );
model = b;
data = md;
err = sqrt( sum( (model - data).ˆ2 ) );

C.10 LMS Error Function to Fit a Single Gaussian to the Carbon Fiber
Data via Convolution

function err = FitLANLFiber(sigma,y,mds,mdd,sds,sdd)
%************************************************** ***************************
%
% TITLE: FitLANLFiber.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Error function called by optimization routine i n Main.m
% We fit the single and double wire separately
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function called by fminsearch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
arg1 = (y/sigma(1)).ˆ2;
arg2 = (y/sigma(2)).ˆ2;
f1 = exp(-arg1/2);
f2 = exp(-arg2/2);
omega1 = [ sum(f1) sigma(1) 0 ];
omega2 = [ sum(f2) sigma(2) 0 ];

b1 = ApplyMultiGaussianBlur( y , sds , omega1 );
b2 = ApplyMultiGaussianBlur( y , sdd , omega2 );
model = [ b1 ; b2 ];
data = [ mds ; mdd ];
err = sqrt( sum( (model - data).ˆ2 ) );

C.11 LMS Error Function to Fit a Double Gaussian to the Carbon Fiber
Data via Convolution

function err = FitLANLFiber2(omega,y,mds,mdd,sds,sdd)
%************************************************** ***************************
%
% TITLE: FitLANLFiber2.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Error function called by optimization routine i n Main.m
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% We fit the single and double wire separately
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function called by fminsearch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
No = length( omega );
omega1 = omega( 1:No/2 );
omega2 = omega( No/2+1:No );

b1 = ApplyMultiGaussianBlur( y , sds , omega1 );
b2 = ApplyMultiGaussianBlur( y , sdd , omega2 );
model = [ b1 ; b2 ];
data = [ mds ; mdd ];
err = sqrt( sum( (model - data).ˆ2 ) );

C.12 LMS Error Function to Fit a Single Gaussian to the Measured Edge
PSF

function err = FitLANLPSF(sigma,y,MeasuredPSF)
%************************************************** ***************************
%
% TITLE: FitLANLPSF.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Error function called by optimization routine i n Main.m
% Here we fit the actual PSF and not the blurred data.
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function called by fminsearch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = multigaussian(y,[],sigma,0);
model = model / sum( model );
data = MeasuredPSF;
err = sqrt( sum( (model - data).ˆ2 ) );
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C.13 LMS Error Function to Fit a Double Gaussian to the Measured Edge
PSF

function err = FitLANLPSF2(omega,y,MeasuredPSF)
%************************************************** ***************************
%
% TITLE: FitLANLPSF2.m
% AUTHOR: Sean K. Lehman
% DATE: September 20, 2005
% FUNCTION: Error function called by optimization routine i n Main.m
% Here we fit the actual PSF and not the blurred data.
% SYNTAX:
% CALLS:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2005 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Function called by fminsearch
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

model = multigaussian(y,omega);
model = model / sum( model );
data = MeasuredPSF;
err = sqrt( sum( (model - data).ˆ2 ) );

C.14 Centered Two Point First Derivative Function
function fp = fd1( f , dt )
%************************************************** ***************************
%
% TITLE: fd1.m
% AUTHOR: Sean K. Lehman
% DATE: December 15, 2004
% FUNCTION: Compute a two point finite difference to approxi mate
% the second derivative.
% SYNTAX:
%
% MODIFICATIONS:
%
%
% (c) Copyright 2004 the Regents of the University
% of California. All rights reserved.
%
% This work was produced at the Lawrence Livermore
% National Laboratory. The United States Government
% retains certain rights therein.
%
%************************************************** *************************/

Nt = length( f );
denom = 2 * dt;
fp = ( shift(f,-1) - shift(f,1) ) / denom;
% Correct for edges of the grid
loc = 1;
fp(loc) = (-3 * f(loc) + 4 * f(loc+1) - f(loc+2)) / denom;
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loc = Nt;
fp(loc) = ( 3 * f(loc) - 4 * f(loc-1) + f(loc-2)) / denom;
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